
Theor Chem Acc (2007) 117:1145–1152
DOI 10.1007/s00214-006-0227-9

REGULAR ARTICLE

Gaussian grid: a computational chemistry experiment over a web
service-oriented grid

N. Sanna · T. Castrignano · P. D’Onorio De Meo ·
D. Carrabino · A. Grandi · G. Morelli · P. Caruso ·
V. Barone

Received: 30 May 2006 / Accepted: 13 October 2006 / Published online: 15 December 2006
© Springer-Verlag 2006

Abstract This paper describes the implementation of
a quantum chemistry code on a service-oriented grid
where the computational workflow is spawned over mul-
tiple, geographically distributed, sites. The application
porting over the grid and its extension as a web ser-
vice over local and wide area networks is fully out-
lined. A description of the procedures developed for
this experiment is given in full detail and the applicabil-
ity of the methodology to similar codes in this scientific
area is assessed. The new developed, grid-aware, appli-
cation has been tested by performing a comprehensive
set of benchmarks including quantum mechanical calcu-
lations on the water molecule. The obtained results of
the benchmarks are reported and a full comparison with
respect to the parallel execution of the same tests using
the standard code is discussed in detail.

Keywords Computational chemistry · Quantum
chemistry · Grid computing · OGSA · Web services

1 Introduction

Computational quantum chemistry is traditionally a field
which requires huge computing resources in order to

N. Sanna (B) · T. Castrignano · P. D’Onorio De Meo ·
D. Carrabino · A. Grandi
CASPUR, Consortium for Supercomputing in Research,
Via dei Tizii 6, 00185 Roma, Italy
e-mail: sanna@caspur.it

G. Morelli · P. Caruso · V. Barone (B)
Dipartimento di Chimica and INSTM, Universitá di Napoli
“Federico II”, Complesso Universitario di Monte S. Angelo,
Via Cintia, 80126 Napoli, Italy
e-mail: baronev@unina.it

solve quantum mechanical (QM) Hamiltonians describ-
ing the properties of molecular species by means of
variational and/or perturbative many-body approaches.
With the last decade of increasing computational appli-
cations of methods rooted into the Density Functional
Theory (DFT) [1,2] and its time-dependent extension
(TD-DFT) [3] to the solution of physical problems, an
open debate is going on about the use of this, against
the traditional wave-function-based quantum mechani-
cal models. However, both families of methods remain
extremely costly in terms of computing resources for
the large-dimension systems of current biological and/or
technological interest. The situation is even more
involved for studies on condensed phases despite the
development of powerful continuum [4] and discrete/
continuum [5] models and the complexity further
increases when going to true dynamical phenomena [6].
As a consequence, several studies are in progress with
the aim of setting up innovative computational strate-
gies able to deal in an effective way with the increasing
complexity of the molecular systems of current interest,
which are still domain of the classical particle simula-
tions [7]. However, in the foreseeable future software
developments will not change the general situation that
leading calculations using quantum chemistry methods
require a huge computing power either in terms is of
CPU and/or I/O resources and top-level computer archi-
tectures are often used. Those computing machines are
often built on top of commodity components and this
trend seems well consolidated even for the upcoming
parallel architectures. From the application side, it is
now becoming evident from the analysis of the com-
putational production in this field, that a further exten-
sion of the local architecture concept for High
Performance Computing (HPC) is needed, and new

1146 Theor Chem Acc (2007) 117:1145–1152

challenging solutions should be adopted to tackle
upcoming problems like the explosive growth of the bio-
logical data, stimulated by the genome projects. In this
area the need of HPC solutions is growing, though usu-
ally not affordable by computational resources based on
a single, even large, local parallel architecture. Grid com-
puting addresses this problem by coordinating and uni-
fying several computational resources [8], allowing the
evaluation (and mining) of large amount of data in the
teraflops (terabyte) range. Unfortunately, present-day
versions of grid middleware provide only a small part
of the functionality required to fully implement archi-
tecture-independent applications. On the other hand,
web services are the distributed computing technology
that offers powerful capabilities for scalable interoper-
ation of heterogeneous software across a wide variety
of networked platforms [9]. They give the opportunity
to create a framework in which applications distributed
across local and wide area network can interoperate
through a set of standard protocols. The crucial differ-
ence with the past is that most of the systems consisted of
ad hoc solutions (e.g. CGI programs) whereas the Web
Services (WS) should lower the barrier to application
integration. To increase individual and collective scien-
tific productivity by making powerful information tools
available to everyone, a service-oriented strategy is nec-
essary. New projects on service-oriented grids [10] have
the assets of both grid and web service technology and
help researchers to obtain high performance web ser-
vices. Complex applications exchanging huge amount
of data, using several web services, have to be man-
aged to gain high performance and high availability sys-
tems, encouraging convergence of grid and web services.
Among those classes of applications, to face the problem
of identifying and assessing the coding or non-coding
nature of Conserved Sequence Tags (CSTs) through
cross-species genome comparisons [11–13], some of the
present authors recently published a grid–web service
framework, CSTgrid [14], whose core is implemented
as web services. The CSTgrid has been developed over
an Open Grid Service Architecture (OGSA), in which
services act as building blocks of the Grid system, allow-
ing the user community to access all services without
any knowledge of the underlying infrastructure. Provid-
ing high performance and high availability the CSTgrid
framework can fairly handle hundreds of concurrent
requests but as an open grid infrastructure based on
standard grid toolkit (e.g. Globus toolkit [15]) it paves
the route to new application porting. To this end, in this
paper we used the underlying CSTgrid infrastructure
to migrate the Gaussian package [16] execution over a
geographically distributed set of nodes by encapsulat-
ing the necessary code sections into a new web service.

This recently developed WS, has several new appealing
features with respect to traditional HPC QM codes, i.e.
among others, (1) it is architecture independent, (2) it
is modular, that is, configurable for user or site require-
ments, (3) it is dynamical, that is, executable on avail-
able nodes. In the following, in Sect. 2 we report the
essential details of the grid infrastructure used in our
computational experiment, while in Sect. 3 we describe
the coding of the grid software and its interface with
the Gaussian parallel execution; Sect. 4 is devoted to a
detailed analysis of the performance tests carried out on
a distributed shared-memory cluster, and finally Sect. 5
contains the conclusions of this work.

2 The reference grid infrastructure

In this section we briefly outline the reference infra-
structure of the Gaussian grid, which is based on the
computing framework recently developed for the CST-
grid application.

The system is developed in multi-layered components
to allow a Rapid Application Development (RAD)
infrastructure and minimal administration efforts. CST-
grid is logically composed by three tiers (Fig. 1): (1)

Fig. 1 The CST grid framework of reference of the Gaussian grid

Theor Chem Acc (2007) 117:1145–1152 1147

an interface tier responsible for communicating with
end-user agents such as web browsers and command-
line clients; (2) a generic (not oriented to search CSTs)
grid tier composed by a grid daemon responsible for the
management of the grid resources and (3) a resource tier
composed of a set of Resources WS, specific to search
CSTs.

The interface tier is responsible for communicating
with end-user agents such as web browsers and
command-line clients. PHP scripts (GridStatus and CST-
grid), running under Apache, allow the user both to
obtain information about the status of the grid and
to launch an application job through a command-line
client. Originally developed for the CSTminer appli-
cation, this layer of the Gaussian grid is a public WS
available to end-user developers through the standard
service description layer, the Web Service Description
Language (WSDL), an XML grammar for specifying a
public interface for a web service.

The grid manager tier is based on four components:
two web services (GridInfo and ResourceAllocator), one
database to store information about the grid status and
one grid daemon. The database contains all the informa-
tion about the hosts taking part in the grid, the services
available on that hosts and the history of the availabil-
ity of these services. The history data are managed by
the grid daemon, a C program running in background,
which periodically queries their services to know the
actual status and stores this information into the data-
base. The detecting time interval for a given WS is cal-
culated by the system and thus configured and stored in
the database. GridInfo is a private web service responsi-
ble for giving access to information about the grid status
toward the external world via web while ResourceAllo-
cator is the web service responsible for taking resource
requests and providing access to them according to a
“load-balancing” failure-safe policy. It takes up-to-date
information about the grid by the GridInfo web ser-
vice. Traditional control algorithms for load balancing
include Random, Round-Robin (RR) [17], Weighted
Round-Robin (WRR) [18], Least Load, Least Connec-
tions, and Fastest Response algorithms [19]. For CST-
grid platform, in ResourceAllocator, we implemented, as
failure-safe policy, the Dynamic Weighted Round-Robin
(DWRR) [20] for load balancing. DWRR is a variant of
WRR, in which the main merit of the algorithm is to
minimize the frequency of detection. ResourceAlloca-
tor, calling the method to perform a DWRR, detects
each host‘s load in the system at intervals and, follow-
ing the detection of loads, a set of weights (the inverse
ratio of host loads) is given to each host. The system
allocates new jobs to each host according to this set of
weights.

The resource tier, originally composed of a set of four
web services working together to compose the CSTmin-
er output, has been rewritten from scratch to permit the
grid execution of Gaussian jobs. In the Gaussian grid just
one resource is available to the user, which with appro-
priate scripting, is in charge of the code executions over
a single node of the grid. The Gaussian resource is repli-
cated on the grid (unlimited) hosts, providing each node
with the appropriate script interface to the Gaussian03
executables. We will see the details of the grid interface
to the Gaussian03 code in the next section, but it is worth
noting that this scheme is absolutely portable to any QM
code with similar computing workflow, by providing the
appropriate script to the resource tier. Furthermore, this
scheme for the replication of the resource(s) over the
grid nodes simplify the jobs’ “load-balancing”, reduces
the inter-node I/O and permits, in principle, to manage
multi-QM jobs within the same scheme of reference.

3 Grid implementation of the code

The Gaussian grid application is composed of three lay-
ers each performing a given task: (1) a pre-processing
tier; (2) a task execution tier and, finally (3) a data collec-
tor tier for the post-processing phase. The leading com-
ponents of the Gaussian grid architecture are depicted
in Fig. 2, where the first two stages are shown in detail.

The first step of the execution flow (in the
pre-processing phase) is implemented via a proper web
interface (Fig. 3) where a WS interacts with the end-user
for the authentication, data input and job configuration.
In a second step the pre-processing WS build up an exe-
cution table containing all the Gaussian03 input files
that are generated taking into account the user data of
the first step. The domain of this phase is the http server
running the WS and all the data are locally stored and
managed.

The second tier of the Gaussian grid application is a
java class [21, references there in] responsible for the
task generation for each of the Gaussian03 input files
created by the pre-processing WS. The Gaussian grid
java class, after contacting the grid manager via its dae-
mon interface, spawn over the grid nodes the scripts for
the Gaussian03 execution. This phase of the application
is somewhat critical, since proper interaction of the java
class with the Server Allocator determines the correct
“load-balancing” of the Gaussian03 tasks over the whole
computational grid. While the load balancing algorithm
is able to cope with various execution queues to obtain
the maximum node loads, QM jobs depend also on the
specific input data. Then, the pre-processing tier plays
a significant role also in the management of the task

1148 Theor Chem Acc (2007) 117:1145–1152

Fig. 2 The architecture of the Gaussian grid

execution over the grid, where a set of (as much as pos-
sible) similar input files should be generated in order to
avoid unnecessary computing bottlenecks. To this end,
in the pre-processing tier the Gaussian input files are
generated keeping in mind these requirements, with
equal “computational effort” (same number of mesh
points to be computed, see next section for details) and
with a fixed number of CPU’s for each QM task that will
be spawned by the master java-class over each node of
the grid. Of course, in a future release of the Gaussian
grid application a more sophisticated methodology for
input generation should be implemented, and the whole
“load-balancing” over the grid must be accomplished
only by the Server Allocator which should be able to
dynamically select the number of CPUs for each node
as a function of the input data and host CPU availability.
Nonetheless, as shown by the benchmarks summarized
in the next section, already this preliminary implemen-
tation of the grid job management shows fairly good
performances in the “load-balancing” of the Gaussian
tasks over the grid nodes.

The last phase of the Gaussian grid workflow, the
post-processing stage, has been intentionally presented
with less detail to the reader. In fact, this part of the
execution flow is the most customizable one by the
site/user depending on the specific results to be extracted
from the outputs of the various Gaussian03 tasks. In

Fig. 3 The Gaussian grid
interface to the GridInfo()
WS function

Theor Chem Acc (2007) 117:1145–1152 1149

Table 1 HF/6-31G* with CPCM single-point energy calculation timings (single task, in seconds) and code efficiency (%)

Machine Timing efficiency 4 × (Nproc = 1) 4 × (Nproc = 2) 2 × (Nproc = 4) 2 × 4(Nproc = 1) 4 × 2(Nproc = 1) 2 × 2(Nproc = 1)
+ 2 × 4(Nproc=1)

P2_1 Java (s) 21.4 15.3 22.9 22.7
G03 (s) 20.3 13.7 20.1 20.2
%Eff 94.8 89.5 87.8 90.0

P2_2 Java (s) 21.5 15.2 23.1 22.7
G03 (s) 20.5 13.8 20.3 20.3
%Eff 95.3 90.8 87.8 91.0

P4_1 Java (s) 22.3 15.5 13.3 22.2 23.1 22.4
G03 (s) 21.4 14.5 12.1 20.5 21.1 20.6
%Eff 96.0 93.5 91.0 92.3 91.3 92.0

P4_2 Java (s) 22.0 15.5 13.4 22.2 22.8 22.5
G03 (s) 21.0 14.5 12.4 20.6 21.2 20.6
%Eff 95.5 93.5 92.5 92.8 93.0 91.6

Overall (s) 22.4 15.6 13.5 22.9 23.2 22.9
%Eff(G03) 94.9 94.5 97.6 99.5 94.8 98.1
%Eff(Java) 95.5 97.4 98.5 96.9 98.3 97.8

Data refer to bi-(P2_) and quad-processors (P4_) machine’s grid running various combinations of Gaussian03 tasks at different Nproc
values (see text for details)

our specific example, where the same QM calculation
(method/basis set) was carried out on equally spaced
set of Cartesian mesh points, the post-processing of
the results was quite an easy task. In fact, each task
returned one or more floating-point numbers with the
value(s) of the molecular property to be computed over
the mesh and the master class collected them on file
so that a simple table of mesh point-property values
was assembled for data visualization. Albeit simple, this
post-processing scheme, clearly demonstrates the feasi-
bility of the Gaussian grid workflow up to its last stage
even for a very large number of tasks. Moreover, the
last stage of the workflow is script based, that is, it is
totally open to enhancements depending on the molec-
ular property to be calculated over each Cartesian mesh
point and on the final phase of data visualization which
has not been taken into account in our experiment.

4 Distributed parallel test for benchmarking

The suite of tests we designed for the benchmarking and
applicability of the Gaussian grid for real case QM cal-
culations was based on simple (repetitive) tasks to be
dispatched across the grid nodes. The reason for choos-
ing such an approach is twofold. First, simple tasks can
be executed in a limited amount of computing time thus
permitting to single out any occurring bottleneck dur-
ing the execution flow and second, simple tasks could be
easily extended (typically adjusting only one parame-
ter) to proceed with increasing execution time. Keeping
this approach in mind, we have setup two sets of single

point (SP) energy calculations over the Gaussian grid
using the PCM(HF/6-31G*) and B3LYP/6-31G* meth-
ods on a mesh of varying x, y, z coordinates for the water
molecule with a fixed step size for the increment (δ) of
the ground state molecular configuration. Fixing the Nδ

maximum extension of each x, y, z, coordinate, the 6N SP
energy calculations were distributed over the Gaussian
grid with various task combinations so that all the pos-
sible cases of G03 processes (and threads within) were
evaluated. In particular, modifying the Nproc param-
eter of the G03 input file we were able to calculate
the parallel code efficiency as result of the G03 pro-
cess timing versus the dispatched execution time mea-
sured on the master java class which generated them.
To this end, we report in Tables 1 and 2 the results of
such a measurement in a test case where two AMD bi-
processors and two AMD quadri-processors (2.6 GHz
clock) were used for the Gaussian grid interconnected
via a LAN network. The tables show the single task
execution times (seconds) for different combinations of
distributed processes in each column with a detailed tim-
ing from the G03 internal routines and from the mas-
ter java class. Then, we calculated the code efficiency
as the ratio of the G03 over the java class timing and
we show them in each case of execution over the grid,
so the user can easily evaluate the performance of the
Gaussian code when it will be dispatched in such a dis-
tributed way. The results reported in Table 1 show that
the G03 efficiency is slightly influenced by the grid exe-
cution with about a 10% performance reduction with
respect to the “free” Gaussian code. These results are
in line with the expected performance of the Gaussian

1150 Theor Chem Acc (2007) 117:1145–1152

Table 2 B3LYP/6-31G(3df , 2p) single-point energy calculation timing (single task, in seconds), code efficiency (%) and speedup (SU)

Overall best performance Overall averaged performance

Machine Timing efficiency 4 × (Nproc = 1) 4 × (Nproc = 2) 2 × (Nproc = 4) 4 × (Nproc = 1) 4 × (Nproc = 2) 2 × (Nproc = 4)

P2_1 Java (s) 308.0 159.1 310.5 159.1
G03 (s) 306.9 158.0 308.9 158.0
%Eff 99.6 99.3 99.6 99.3

P2_2 Java (s) 307.7 159.9 310.9 159.6
G03 (s) 306.6 159.6 309.8 158.5
%Eff 99.6 99.8 99.6 99.3

P4_1 Java (s) 308.7 166.2 95.9 310.3 168.2 97.7
G03 (s) 307.6 165.2 94.6 309.3 167.2 96.6
%Eff 99.6 99.4 98.6 99.7 99.4 98.9

P4_2 Java (s) 308.4 165.2 96.0 309.6 164.3 96.7
G03 (s) 307.2 164.1 94.9 308.5 163.3 95.3
%Eff 99.6 99.3 98.8 99.6 99.4 98.6

Overall (s) 308.8 166.3 96.1 311.0 168.3 97.8
%Eff(Java) 99.6 95.7 99.8 99.5 94.5 98.9
SU 1.00 1.86 3.21 1.00 1.85 3.18

Data refer to bi-(P2_) and quad-(P4_) processor machine’s grid running various combinations of Gaussian03 tasks at different Nproc
values (see text for details). Results refer to two data sets: best and averaged performance

executables when used for very fast calculations where
the delay due to the grid dispatching (1–2 s depending
on the number of processes spawned) strongly influ-
ences the overall elapsed time. Nonetheless, even in this
limit case, the global efficiency of the G03 execution over
the grid (measured as the overall timing of the master
java class) is fairly good passing from about 96% (4 pro-
cesses over 4 machines) up to ca. 98% (12 processes over
4 machines). This limited effect on the overall comput-
ing efficiency of the number of processes spawned over
the grid suggests that the overhead due to the dispatch-
ing is almost constant and directly dependent on the
number of nodes besides the number of processes. In
fact, repeating the same tests but with larger G03 exe-
cution times (Table 2) for each single task, we see that
the same overhead of 1–2 s is observed for each process
but in this case the overall efficiency is now very close to
99%. Moreover, the internal speedup of the G03 code
calculated with respect to the Nproc parameter, results
almost identical to the “free” G03 code (about 3.2 over
4 CPUs), demonstrating that the grid execution of QM
tasks could be implemented with a minimal overhead
on the parallel code scalability.

This result, together with the high stability of the dis-
tributed system, is extremely encouraging for the appli-
cation of the Gaussian grid in large-scale computations
where hundreds of tasks should be managed to be exe-
cuted on hundreds of CPUs. The extension to this huge
computational size will be eventually limited only by
the accessibility of large, general-purpose, computing
grids, but the authors’ opinion is that, after the present
experiment, grid-aware QM codes are almost ready to

be efficiently ported over a geographically distributed
environment.

On these grounds, our implementation can be already
considered the method of choice for all the so-called
“embarrassingly parallel” applications in which message
passing among the different platforms is not needed and
the times for pre- and post-processing are negligible.
In the field of computational models for molecular sci-
ences we can mention fitting of potential energy surfaces
obtained by quantum mechanical methods for generat-
ing effective potentials to be used in Monte Carlo (MC)
or Molecular Dynamics (MD) simulations [22] and the
computation of harmonic frequencies by finite differ-
ence of electronic energies and/or energy gradients [23].
Note that, thanks to the ongoing development of effec-
tive TD-DFT approaches and their analytical gradients
both for isolated molecules and for condensed phases
[24], the range of application of the above approaches
is being extended to the evaluation of Franck–Condon
factors and other vibronic couplings of paramount rel-
evance in several branches of molecular spectroscopy
[25].

More recently, effective codes have been developed
for the evaluation of vibrational frequencies [26], aver-
aged molecular properties [27,28], and thermodynamic
functions [29] beyond the harmonic approximation by
a second-order perturbative approach. Since the rate-
determining step of the model is the evaluation of energy
(third and semi-diagonal fourth) and property (first, sec-
ond and, in some cases, third) derivatives by finite differ-
ences, also in this case our implementation is directly
applicable. Note that, using a semi-classical approach

Theor Chem Acc (2007) 117:1145–1152 1151

[30], the model can be used also to compute reaction
rates including anharmonic and tunnelling effects [26].
In the same vein, reaction path analyses (IRC, QST2,
etc.) can be effectively partitioned on different nodes
on the grid.

In the case of condensed phases, straightforward
applications involve the evaluation of energies and/or
properties at different k points on different platforms
for applications in the field of polymers [31–34] and sur-
face sciences [35,36].

The situation is more involved for more demanding
applications like, e.g., direct dynamical computations
by methods rooted in the Born–Oppenheimer or the
extended Lagrangian (CPMD [37,38], ADMP [39–43],
…) approach. However, pending further developments,
our implementation can already be of interest replacing
a single long trajectory by a bunch of shorter trajectories
on different nodes.

An interesting case of application of our distributed
method of QM computation is the evaluation of
Gaussian Type Orbitals (GTOs) and their derivatives
over a 3D mesh (a cube). In particular, the cube eval-
uation technique has been widely used in the Single
Centre Expansion (SCE) approach to the calculation of
molecular properties in many electrons systems. One of
the codes implementing such a method is the SCELib
library [44] where the many-centre GTOs solution of
the ground electronic state for a given molecular sys-
tem, are computed over a 3D mesh and then expanded
with respect to the molecular centre of mass to obtain
a numerical SCE wave-function. The initial phase of
the SCE procedure carried out in the sphint function of
SCELib, the GTO evaluation over a 3D mesh, adopts
substantially the same algorithm we implemented in our
tests for the computation of a function over a spatial
grid. Then, it would be interesting to compare the par-
allel measured performance of the sphint function with
respect to the same kind of calculation carried out using
our Gaussian grid but taking care to rescale the result for
the code efficiency we measured in the above-reported
benchmarks. In the graph of Fig. 4 we report the results
of this comparison by superimposing the sphint paral-
lel speedup over a shared-memory machine up to 32
CPUs (IBM p691) with the Gaussian grid performance
at 75, 85 and 95% code efficiency of a grid composed by
8 nodes with 4 CPUs each. It is evident from the data
shown that even at the lowest overall efficiency the dis-
tributed computation results more advantageous than
a single shared-memory machine. Moreover, consider-
ing that the expected performance of the Gaussian grid
for such a simple 3D mesh evaluation of a GTO wave-
function will be well beyond the 95% in overall code
efficiency, the reader could easily evaluate the benefits

Fig. 4 The predicted scalability of the Gaussian grid for a GTO
mapping over a 3D Cartesian grid. Data refer to 95% (A), 85%
(B) and 75% (C) overall code efficiency (G03 internal × Java mas-
ter class) compared to the measured performance of the SCELIb
sphint function running on an IBM p691 configured as P2 (from
Table 9 of Ref. [44])

of the distributed grid solution we experimented in this
paper with respect to traditional, locally executed, par-
allel binaries.

5 Conclusions

In this paper we have presented an innovative solution
to the execution of top class applications such those cur-
rently in use in quantum chemistry calculations. We had
setup a grid environment and developed the necessary
code sections to port one of the most used QM packages,
G03, over a distributed, wide area network grid. This
computational experiment, named the Gaussian grid,
has proven to be an extremely stable computing envi-
ronment when built up with advanced technologies such
as service-oriented grid architectures and web services.
The computational benefits of this solution have been
proven to be even better than locally executed parallel
applications and the Gaussian grid performance scala-
bility is expected to be more cost-effective as the num-
ber of grid nodes increases. The application of the grid
environment we had setup is not limited to the Gauss-
ian package but the open architecture of the informa-
tion technologies adopted in this experiment could be
easily adapted to many parent computational codes. To
this end, some examples of grid applications have been
presented, including spatial mesh evaluation of func-
tion and their derivatives, generating effective potential
for MC and MD simulations and reaction path analysis
(IRC, QST) just to cite a few.

1152 Theor Chem Acc (2007) 117:1145–1152

It is the authors’ opinion that such distributed solu-
tions for very large computing experiments in this
scientific area could become of paramount importance
provided a cooperative effort of chemistry- and technol-
ogy-oriented researchers will be setup. Moreover, vir-
tual laboratories with geographically distributed nodes
(e.g. VILLAGE [45]) are becoming the mainstream
solutions to the most demanding applications in many
scientific sectors. The computational experiment pre-
sented in this paper is in line with those trends and we
expect that, combining together other solutions based
on grid technologies, the computational chemistry com-
munity will benefit most of the ongoing development of
innovative models and of the corresponding computer
codes.

References

1. Parr RG, Yang W (1989) Density-functional theory of atoms
and molecules. Oxford University Press, New York

2. Koch W, Holthausen MC (2001) A chemist’s guide to density
functional theory, 2nd edn. Wiley-VCH, Weinheim

3. Marques MAL, Gross EKU (2004) Annu Rev Phys Chem
55:427

4. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999
5. Improta R, Barone V (2004) Chem Rev 104:1231
6. Barone V, Polimero A (2006) Phys Chem Chem Phys. DOI

10.1039/b607998a
7. Scalmani G, Barone V, Kudin KN, Pomelli CS, Scuseria GE,

Frisch MJ (2004) Theor Chem Acc 111:90
8. Foster I, Kesselman C, Tuecke S (2001) Int J Supercomput

Appl 15:3
9. Cerami E (2002) Web services. O’Really

10. Foster C, Kesselman C, Nick JM, Tuecke S (2002) The Phys-
iology of the grid: an open grid services architecture for dis-
tributed system integration. http://www.globus.org/alliance/
publications/papers/ogsa.pdf

11. Mignone F, Grillo G, Liuni S, Pesole G (2003) Nucl Acids Res
31:4639

12. Castrignano T, Canali A, Grillo G, Liuni S, Mignone F, Pesole
G (2004) Nucl Acids Res 32(Web Server issue):W624-W627

13. Castrignano T, D’Onorio De Meo P, Grillo G, Liuni S,
Mignone F, Talamo IG, Pesole G (2005) Bioinformatics,
November 2

14. D’Onorio De Meo P, Carrabino D Sanna N, Castrignano T,
Grillo G, Licciulli F, Liuni S, Re M, Mignone F, Pesole G
(2006) FGCS (in press)

15. Foster I, Kesselman C (1997) Int J Supercomput Appl 11:115
16. Frisch MJ, et al. (2003) Gaussian 03, Revision C.02. Gaussian,

Inc., Wallingford CT
17. Nagle J (1987) IEEE Trans Commun 35(4):435
18. Katevenis M, Sidiropoulos C, Courcoubetis C (1991) IEEE J

Select Areas Commun 9:1265
19. River Stone Networks. Server load balancing: the key to

a consistent customer experience. (2002) Technology white
paper, No. 101:1–6, http://www.riverstonenet.co.jp/pdf/tech-
nology/whitepapers/SLBv5.PDF

20. Li D-C, Wu C, Chang FM (2005) Comp Oper Res 32:2129
21. http://java.sun.com and references therein
22. Chillemi G, Barone V, D’Angelo P, Mancini G, Persson I,

Sanna N (2005) J Phys Chem B 109:9186
23. Carbonniere P, Begue D, Dargelos A, Pouchan C (2004) Chem

Phys 300:41
24. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R,

Barone V (2006) J Chem Phys 124:094107
25. Santoro F, Barone V, Improta R (2006) Angew Chem

(in press)
26. Barone V (2005) J Chem Phys 122:014108
27. Barone V, Viglione R, (2005) J Chem Phys 123:234304
28. Barone V, Carbonniere P, Pouchan C (2005) J Chem Phys

122:224304
29. Barone V (2004) J Chem Phys 120:3059
30. Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willets

A (1990) Chem Phys Lett 172: 62
31. D’Amore M, Talartico G, Barone V (2006) J Am Chem Soc

128:1099
32. Improta R, Barone V, Kudin KN, Scuseria GE (2002) J Am

Chem Soc 124:113
33. Improta R, Kudin KN, Scuseria GE, Barone V (2001) J Am

Chem Soc 123:3311
34. Improta R, Barone V, Kudin KN, Scuseria GE (2001) J Chem

Phys 114:2541
35. Cantele G, Trani F, Ninno D, Cossi M, Barone V (2006) J Phys

C 18:2349
36. Festa G, Cossi M, Barone V, Cantele G, Ninno D, Iadonisi G

(2005) J Chem Phys 122:184714
37. Car R, Parrinello M (1985) Phys Rev Lett 55:2471
38. Pavone M, Cimino P, De Angelis F, Barone V (2006) J Am

Chem Soc 128:4338
39. Schlegel HB, et al. (2001) J Chem Phys 114:9758
40. Iyengar SS, et al. (2001) J Chem Phys 115:10291
41. Schlegel HB, et al. (2002) J Chem Phys 117:8694
42. Rega N, Brancato G, Barone V (2006) Chem Phys Lett 422:367
43. Brancato G, Rega N, Barone V (2006) J Chem Phys, (in press)
44. Sanna N, Morelli G (2004) Comput Phys Commun 162:51
45. VILLAGE, VIrtual Laboratory for Large-scale Appli-

cations in a Geographically-distributed Environment.
http://www.lsdm.campusgrid.unina.it

	Gaussian grid: a computational chemistry experiment over a web service-oriented grid
	Abstract
	Introduction
	The reference grid infrastructure
	Grid implementation of the code
	Distributed parallel test for benchmarking
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

